Stanford astrophysicists report first detection of light from behind a black hole
dug88,
member, Registered: 12/15/2010
Location:
Mood:
Member is offline.posted on Jul, 28 2021 @ 09:29 PM
direct link to this postSo, something actually pretty awesome. In a paper published today in Nature astrophysicists have reported the first ever detection of light emitted from behind a black hole. Ya know, those things that have such a strong gravitational pull, light itself can’t escape.
An analysis of X-ray flares from the innermost of region of a black hole’s accretion disk revealed short flashes of photons with patterns consistent with emmision from behind the black hole.
Pretty much, x-rays and photons are bouncing around the accretion disk of the black hole in such a way that the photons could only have emerged from behind the black hole itself.
Such a thing was predicted by Einstein some time ago now, some long time and finally, for the first time, it has now been observed.
This means soon we may actually get a glimpse at the far.side of a black hole.Link to study published in nature.
Watching X-rays flung out into the universe by the supermassive black hole at the center of a galaxy 800 million light-years away, Stanford University astrophysicist Dan Wilkins noticed an intriguing pattern. He observed a series of bright flares of X-rays – exciting, but not unprecedented – and then, the telescopes recorded something unexpected: additional flashes of X-rays that were smaller, later and of different “colors” than the bright flares.
According to theory, these luminous echoes were consistent with X-rays reflected from behind the black hole – but even a basic understanding of black holes tells us that is a strange place for light to come from.
“Any light that goes into that black hole doesn’t come out, so we shouldn’t be able to see anything that’s behind the black hole,” said Wilkins, who is a research scientist at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford and SLAC National Accelerator Laboratory. It is another strange characteristic of the black hole, however, that makes this observation possible. “The reason we can see that is because that black hole is warping space, bending light and twisting magnetic fields around itself,” Wilkins explained.
The strange discovery, detailed in a paper published July 28 in Nature, is the first direct observation of light from behind a black hole – a scenario that was predicted by Einstein’s theory of general relativity but never confirmed, until now.
The leading theory for what a corona is starts with gas sliding into the black hole where it superheats to millions of degrees. At that temperature, electrons separate from atoms, creating a magnetized plasma. Caught up in the powerful spin of the black hole, the magnetic field arcs so high above the black hole, and twirls about itself so much, that it eventually breaks altogether – a situation so reminiscent of what happens around our own Sun that it borrowed the name “corona.”
“This magnetic field getting tied up and then snapping close to the black hole heats everything around it and produces these high energy electrons that then go on to produce the X-rays,” said Wilkins.
As Wilkins took a closer look to investigate the origin of the flares, he saw a series of smaller flashes. These, the researchers determined, are the same X-ray flares but reflected from the back of the disk – a first glimpse at the far side of a black hole.
Link to study published in nature.
Abstract from the study:
The innermost regions of accretion disks around black holes are strongly irradiated by X-rays that are emitted from a highly variable, compact corona, in the immediate vicinity of the black hole1,2,3. The X-rays that are seen reflected from the disk4, and the time delays, as variations in the X-ray emission echo or ‘reverberate’ off the disk5,6, provide a view of the environment just outside the event horizon. I Zwicky 1 (I Zw 1) is a nearby narrow-line Seyfert 1 galaxy7,8. Previous studies of the reverberation of X-rays from its accretion disk revealed that the corona is composed of two components: an extended, slowly varying component extending over the surface of the inner accretion disk, and a collimated core, with luminosity fluctuations propagating upwards from its base, which dominates the more rapid variability9,10. Here we report observations of X-ray flares emitted from around the supermassive black hole in I Zw 1. X-ray reflection from the accretion disk is detected through a relativistically broadened iron K line and Compton hump in the X-ray emission spectrum. Analysis of the X-ray flares reveals short flashes of photons consistent with the re-emergence of emission from behind the black hole. The energy shifts of these photons identify their origins from different parts of the disk11,12. These are photons that reverberate off the far side of the disk, and are bent around the black hole and magnified by the strong gravitational field. Observing photons bent around the black hole confirms a key prediction of general relativity.
edit on 28/7/2021 by dug88 because: (no reason given)
edit on 28/7/2021 by dug88 because: (no reason given)
I love this stuff… so good for the head, it is!